ROAD-TANK AUTOMATIC LOADING SYSTEM

ROAD-TANK AUTOMATIC LOADING SYSTEM NEW 2015 Version

CO₂ SENSE - IMR-MS

IMR-MS = ION MOLECULE REACTION - MASS SPECTROMETER

The V&F FCA system is a dual mass-spectrometer capable of measuring gas concentrations over a wide range

Multi component analysis Organic compounds ppb / ppm Levels of detection User friendly easy to use software

Quality control system for tankers for liquid CO2 / Oxygen / Argon / Nitrogen

Pentatec supplies a fully automatic system to manage the complete process of road-tanker loading under CO2 quality control which assures:

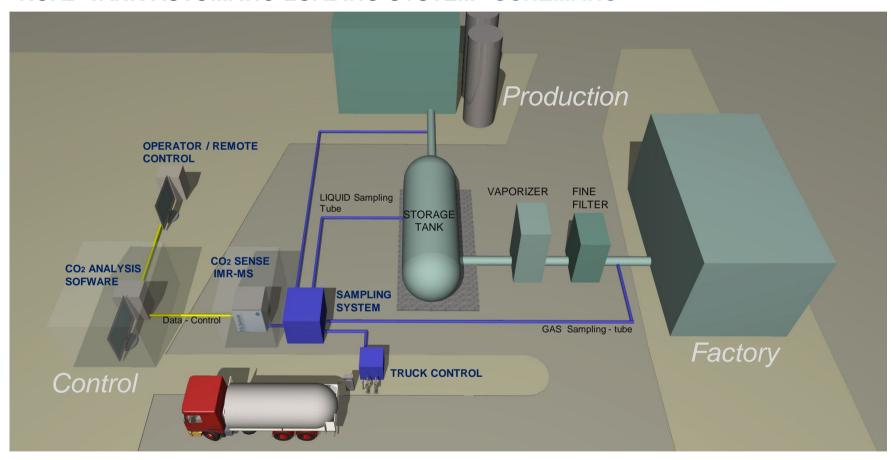
- -the control of the automatic filling sequence for liquid CO2/N2/Ar/O2 in transportable tanks;
- -the analysis of residual impurities in the road-tank to be filled;
- -the analysis of the product loaded (in connection with the CO2/N2/Ar/O2 analysis system);
- -The print out of delivery bill and quality certificate.

How the system works

When a road-tank arrives it is recognized by the driver badge. As soon as flexible hoses are connected, the analysis of the road-tank starts to avoid any product contamination. If everything is OK, the system fills the tank truck in a closed loop configuration. If not, the truck is filled in open loop mode. Once completed the filling, the system prints out the Liquid CO2 certificate of analysis and the Bill of Loading. The system can also be connected to the Factory truck weighing system.

Benefits:

- 24 hours loading
- No personnel required (any manual operation is done by the truck driver)
- Quality certificate
- Automation,
- Product traceability
- CO2 product batch analysis According to ISBT EIGA criteria
- Versatility



ROAD-TANK AUTOMATIC LOADING SYSTEM

ROAD-TANK AUTOMATIC LOADING SYSTEM SCHEMATIC

New list compounds impurities in CO₂ - IMR-MS - 2015



Compound	FORMULA	Unit	MDL
Methane	CH ₄	ppm v/v	0,1
Ethane	C ₂ H ₆	ppm v/v	0,1
Ethylene	C ₂ H ₄	ppm v/v	0,1
Acethylene	C ₂ H ₂	ppm v/v	0,1
Propane	C ₃ H ₈	ppm v/v	0,1
Isobutane	C4H10	ppm v/v	0,1
N-Butane	C ₄ H ₁₀	ppm v/v	0,1
Total volatile hydrocarbons as Metane	-	ppm v/v	
Benzene	C ₆ H ₆	ppb v/v	1
Toluen	C7H8	ppb v/v	1
M-Xylene	C ₈ H ₁₀	ppb v/v	2
Total Aromatic hydrocarbons	втх	ppb v/v	
Chloroform	CHCI ₃	ppb v/v	2
1-2 Dichloroethane	C ₂ H ₄ Cl ₂	ppb v/v	2
Trichloroethylen	C ₂ HCI ₃	ppb v/v	2
Tetrachloroethylen	C2CI4	ppb v/v	2
BromodiChloromethane	CHCl₂Br	ppb v/v	2
Chlorodibromomthane	CHCIBr ₂	ppb v/v	2
Tribromomethane	CHBr ₃	ppb v/v	2
Methanol	CH₃OH	ppm v/v	0,1
Acetaldehyde	C ₂ H ₄ O	ppm v/v	0,02
Ethanol	C ₂ H ₆ O	ppm v/v	0,1
Hydrogen	H ₂	ppm v/v	1
Oxygen	O_2	ppm v/v	1
Nitrogen	N ₂	ppm v/v	1
Carbon monoxide	CO	ppm v/v	0,5
Carbonyl sulfide	cos	ppb v/v	5
Hydrogen sulfide	H₂S	ppb v/v	5
Methylmercaptane	CH₃SH	ppb v/v	5
Carbon sulphyde	CS ₂	ppb v/v	5
Dimethyl Sulfide	(CH ₃) ₂ S	ppb v/v	5
Sulfur dioxide	SO ₂	ppb v/v	10
Total sulfur (expressed as S, SO2 Excluded)		ppb v/v	
Ammonia	NH ₃	ppm v/v	0,1
Nitrogen monoxide	NO	ppm v/v	0,1
Nitrogen dioxide	NO ₂	ppm v/v	0,1
Dimethyl Ether	C ₂ H ₆ O	ppm v/v	0,1
Ethyl acetate	C4H8O2	ppm v/v	0,1
Ethyl formate	$C_3H_6O_2$	ppm v/v	0,1
Diethanolamine	C4H11NO2	ppm v/v	0,1
Umidity	H ₂ O	ppm v/v	1

CO2 SENSE - IMR-MS - Ion molecule reaction - mass spectrometer

Major Market / Industry Fields

Automotive Industry Specialty gases Industry Environmental Industry Tobacco Industry Health Care Industry